Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management

Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management

Journal Reference

Energy, Volume 67,  2014, Pages 149-161.

Wen Bao, Silong Zhang, Jiang Qin, Weixing Zhou, Kaili Xie.

School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China.

Abstract

Thermal management of fuel is very important for the cooling system of an advanced engine. In order to study the 3-D phenomena of fuel flow with cracking reaction in the cooling channels and their effect on the utilization of fuel heat sink, numerical models of cracking fuel flow in an asymmetrically heated rectangular tube are built on the basis of the real fuel thermophysical properties using commercial software and validated through experiments in a conversion range from 0% to 76%. The simulation results indicate that the velocity, temperature and conversion of fuel flow exhibit a clear nonuniformity in the cross-section of the rectangular tube, causing the nonuniformities of physical and chemical heat sinks. Compared to the situation without chemical reaction, due to the fact that chemical reaction can slightly reduce the nonuniformity of temperature field, the nonuniformity of physical heat sink resulting from the temperature field can be slightly reduced. However, the nonuniformity of total heat sink can be dramatically reduced by chemical reaction because the chemical heat sink is one of the major components of total heat sink, and unlike physical heat sink, chemical heat sink shows much less nonuniformity under the influence of both temperature and velocity.

Go To Journal

 

 

 

Check Also

hydrothermal jet drilling for geothermal wells- Renewable Energy Global Innovations

Impact of flow field of hydrothermal jet drilling for geothermal wells in a confined cooling environment