Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper

Significance Statement

Conventional Copper is incapable efficiently of reducing carbon monoxide and exclusively react with water. The authors used in this study oxide-derived copper nanocrystalline and produced 57%  faradaic effeciency. This is > 10 fold increase over conventional copper catalysts.

 

CuO nanocrystaline

Nature 508, 504–507 

Christina W. Li, Jim Ciston & Matthew W. Kanan.

Department of Chemistry, Stanford University, Stanford 94305, California &
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley 94720, California.

 

Abstract

The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O (‘oxide-derived Cu’) produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25volts to –0.5volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

Go To Journal

 

 

Image source:  modified from Nature (extended data figure 9d)

Check Also

inorganic-organic hybrid membranes consisting of organotrisiloxane linkages and their fuel cell - Renewable Energy Global Innovations

Synthesis of inorganic-organic hybrid membranes consisting of organotrisiloxane linkages and their fuel cell properties