Biodiesel production via esterification of oleic acid catalyzed by chlorosulfonic acid modified zirconia

Applied Energy, Volume 116, 1 March 2014, Pages 191-198. 

Yue Zhangb, Wing-Tak Wonga,  Ka-Fu Yunga.

 

a) Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong and

b) Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

 

Biodiesel is a promising renewable alternative to fossil energy. Biodiesel production from low-cost feedstock involves an essential pretreatment step – esterification of free fatty acids (e.g. oleic acid), for avoiding soap formation and catalyst deactivation. Sulfuric acid modified zirconia (H2SO4–ZrO2) is known to be an effective heterogeneous catalyst for this reaction. However, due to rapid  leaching, its reusability is low and its practical use is thus largely hindered. Herein, we report a more stable solid acid analogue for the reaction, chlorosulfonic acid modified zirconia (HClSO3–ZrO2). It was characterized by XRD, SEM, BET, EDX, IR, TGA, and NH3-TPD. Compared with H2SO4–ZrO2, there is over 3 times more sulfur content and nearly 4 times more acid sites amount for HClSO3–ZrO2. More importantly, HClSO3–ZrO2 demonstrates high catalytic activity and long durability in esterification of oleic acid, in which the fatty acid methyl ester yield reaches 100% consecutively for at least 5 cycles under mild conditions.

Go to Journal

oliec acid

 

Check Also

Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials- renewable energy global innovations

Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels